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The AdS/CFT correspondence relates a gravitational theory (a
theory of closed strings) to a gauge theory with no gravity at all

Maldacena ’97

The correspondence offers a spectacular new insight into

dynamics of strongly coupled gauge fields
black holes
many-body physics

A dream:
Find a string description of realistic confining theories
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The fundamental model of AdS/CFT:

N = 4 super Yang−Mills ⇔ closed strings in AdS5×S5 geometry

Research on the fundamental model of AdS/CFT

Initial research was concentrated on deriving gauge theory
correlators from supergravity

Gubser, Klebanov and Polyakov ’98

Witten ’98

Studies of unprotected operators with large R-charge
Berenstein, Maldacena and Nastase ’02

Discovery of integrable structures in gauge and string
theory
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In spite of important recent progress, the exact
spectra of both N = 4 super Yang-Mills and
strings on AdS5 × S5 remain unknown

My goal is to explain the progress towards
solving the spectral problem of the fundamental
model based on the ideas of exact integrability
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N=4 super Yang-Mills theory

Maximally supersymmetric field theory in 4dim:

Aµ, Φi , i = 1, . . . , 6 and 4 Weyl fermions

all fields in the adjoint of U(N).

Lagrangian

L =
1

g2
YM

Tr
[

1
4 FµνFµν + 1

2 DµΦiDµΦi − 1
4 [Φi ,Φj ]2 + fermions

]

It is an exact (super) conformal theory in four dimensions

Conformal symmetry includes Poincaré algebra, dilatation and
conformal boosts

gYM is not running; it is merely a parameter. Another parameter
is the rank N of the gauge group
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Conformal theories – CFT’s

CFT is characterized by a set of primary operators {Oi}. Primary
operators correspond to eigenstates of the dilatation

D · O = i∆ O

∆ is the scaling dimension

A CFT is described by 2- and 3-point cor. functions of O

〈Oi (x)Oj (y)〉 =
δij

|x − y |2∆i

〈Oi (x)Oj (y)Ok (z)〉 =
Cijk

|x − y |∆i +∆j−∆k |x − z|∆i +∆k−∆j |y − z|∆j +∆k−∆i

Composite gauge invariant operators ⇔ ‘observables’

O = Tr
h

. . . FµνDρΦi . . . Ψk DλΦjΦm . . .
i

gauge-invariant products of elementary fields
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Scaling dimensions

The composite operators

O = Tr
h

. . . FµνDρΦi . . . Ψk DλΦjΦm . . .
i

mix under renormalization

〈Oi (x)Oj (y)〉 =
1

|x − y |2∆class

h
δij + λ Mij log Λ + · · ·

i
where λ = g2

YMN is the ’t Hooft coupling

Diagonalization of the mixing matrix M leads to the appearance
of the “anomalous” dimension:

∆class ⇒ ∆(gYM, 1/N) ≡ ∆(λ, 1/N)

Mixing problem simplifies in the limit N →∞, where a wonderful
connection to integrable models and string theory emerges!
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Planar scaling dimensions via integrable spin chains

O = tr(Z L−MW M) , Z = Φ1 + iΦ2 , W = Φ3 + iΦ4

Z

W

A closed spin chain of length L
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Planar scaling dimensions via integrable spin chains

The Hamiltonian H acts as 2L × 2L matrix, where L is the length
of the chain. M is a number of magnons

At one loop the Hamiltonian of the su(2) spin chain is

H =
L∑

i=1

(
I − Pi,i+1

)
, P(↑↓) = (↓↑)

The Heisenberg spin chain – paradigmatic integrable model of
condensed matter physics. Solved by the Bethe ansatz.

Minahan and Zarembo, ’03

Previously observed integrable structures in QCD: Lipatov, ’94; Faddeev and Korchemsky ’95
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Higher-loop integrability

Conformal Hamiltonian H defines an integrable long-range spin chain

H1` =
LX

i=1

“
I − Pi,i+1

”
⇐ Heisenberg Hamiltonian

H2` =
LX

i=1

“
− 3

2
I + 2Pi,i+1 −

1
2

Pi,i+2

”

H3` =
LX

i=1

“
5I − 7Pi,i+1 + 2Pi,i+2

− 1
2

(Pi,i+3Pi+1,i+2 − Pi,i+2Pi+1,i+3)
”

Beisert, Kristjansen and Staudacher ’03

Integrability:

Elementary excitations are magnons (quasi-particles with momenta pk )

Existence of family of commuting charges {Qi}: [H, Qi (λ)] = [Qi (λ), Qj (λ)] = 0
⇒ elastic scattering

In the limit L →∞ the Hamiltonian can be diagonalized by the Bethe Ansatz
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Obscuring spin chains at higher loops

4body interaction (3d order of pert. theory)

 

2body interaction (1st order of pert. theory)

3body interaction (2nd order of pert. theory)

At higher orders of perturbation theory interactions “wrap” around the circle making the

spin chain interpretation obscure
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The planar AdS/CFT duality conjecture

Planar scaling dimensions ∆(λ) in Yang-Mills theory
should be computable by string theory! Simultaneously,
this should test the conjecture.

The string theory is type IIB superstring moving in the
AdS5 × S5 space-time

The action for X M(τ, σ), M = 1, . . . , 10

S = −g
2

∫
dτdσ

√
−hhαβ ∂αX M∂βX N GMN(X ) + fermions

Metsaev, Tseytlin ’98

Strings are closed⇔ sigma-model is defined on a cylinder
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Anti-de Sitter space
Maximally symmetric space of constant negative curvature

String energy E is a conserved Noether charge corresponding to the
SO(2) subgroup of the conformal group SO(4, 2)
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J

J is a conserved Noether charge corresponding to one of the
Cartan generators of SO(6)
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The planar AdS/CFT duality conjecture

The conformal+R-symmetry groups SO(4, 2)× SO(6)

Symmetry group of the N = 4 super Yang-Mills

Isometry group of AdS5 × S5 space-time, i.e. the global
symmetry group of string sigma model

Representations are described by a set of numbers

[∆ = E , S1, S2; J1, J2, J3]

i.e. by energy, spins and angular momenta. Apparently
only ∆ can continuously depend on g.
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AdS/CFT duality conjecture

The gauge-string correspondence

’t Hooft coupling λ ⇔ Inverse string tension g =
√

λ
2π

SYM operators ⇔ String states

Scaling dimension ∆(λ) ⇔ String energy E(g)
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The planar AdS/CFT duality conjecture

Non-linear
Sigma Model

in 2D

Quantum 
Field Theory 

in 4D

S = −g
2

∫
dτdσ

√
−hhαβ∂αX M∂βX NGMN(X ) + fermions

To compute E(g) and therefore ∆(g), one needs to solve the
2-dim quantum sigma model on a cylinder! Very hard ...

In the last 5 years a lot of evidence has been collected that
string integrability is the key to the solution
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AdS5 × S5 superstring in the light-cone gauge

Classical string sigma model is integrable: it exhibits an
infinite number of conservation laws! Bena, Polchinski and Roiban ’03

Quantum integrability is a plausible assumption!

Sigma model has a local diffeomorphism symmetry. It is
eliminated through the light-cone gauge fixing. Frolov and G.A. ’04

Sigma model is on a cylinder of circumference P+ = J,
where J is an angular momentum of string around S5

Sigma model has soliton solutions – ”giant magnons”
Hofman and Maldacena ’06
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Integrability on a plane ⇔ Factorized Scattering

When J →∞ the cylinder decompactifies into a plane

J

J → ∞
Η

Integrability implies:

the number of particles is conserved
scattering permutes momenta
any multi-particle scattering process is factorised into a
sequence of two-body events. Two-particle S-matrix
S(p1, p2) is the main object
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Dispersion relation and the two-body S-matrix

Particles form a 16-dim multiplet of l.c. symmetry algebra

Exact dispersion relation for string excitations

ε(p) =

√
1 + 4g2 sin2 p

2

Beisert, Dippel and Staudacher ’04

Exact two-body S-matrix

S256×256(p1, p2) ⇐ exact in g

was found from various symmetry considerations and the
perturbative data Frolov, Staudacher and G.A. ’04; Staudacher ’04;

Beisert ’05; Frolov, Zamaklar and G.A. ’06
Janik ’06; Beisert, Hernandez and Lopez ’06

Beisert, Eden and Staudacher ’06
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Properties of the S-matrix

S23S13S12 = S12S13S23 ←− Yang-Baxter equation

S12(p∗1, p∗2) S12(p1, p2)
† = I ←− generalized physical unitarity

S12(p1, p2)
T = Ig

12S12(p1, p2)I
g
12 ←− CPT invariance

S12(p1, p2)
−1 = S12(−p1,−p2) ←− parity transformation

S12(p1, p2)S21(p2, p1) = I ←− unitarity

S21(p∗2, p∗1) = S12(p1, p2)
† ←− hermitian analyticity

C−1
1 S

t1
12(p1, p2)C1S12(−p1, p2) = I ←− crossing



Emergence of integrability in gauge theory AdS/CFT duality conjecture String integrability and spectral problem

Factorized scattering
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23S13S12

S
S13

S S13S12 23

S13

t
p
3

p
2

p
1

p
2

p
1

p3

S12
23

p
3

p p
21

p1

p3

p
2

S23

S

S



Emergence of integrability in gauge theory AdS/CFT duality conjecture String integrability and spectral problem

Spectrum on a large circle

Bethe-Yang equations

“eipk J
M∏

k 6=i

S(pi , pk ) = 1”

(+ additional equations with auxiliary roots encoding non-diagonal structure of S)

Beisert,Staudacher ’04

Given {pi}M
i=1, the energy (dimension) is given by

E =
M∑

i=1

ε(pi) =
M∑

i=1

√
1 + 4g2 sin2 pi

2
= E(g, J)

This is incorrect answer for finite J!

Higher loop Feynman graphs, finite-size corrections to classical string energies,
etc., all points to this...
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TBA and mirror theory
Follow the TBA approach for relativistic models (Zamolodchikov ’90)

Frolov and G.A. ’07

 "mirror string"
   of length

string of
length =JL

R

One Euclidean theory – two Minkowski theories. One is related to the other by
the double Wick rotation:

σ̃ = −iτ , τ̃ = iσ

The Hamiltonian H̃ w.r.t. τ̃ defines the mirror theory .

Ground state energy (R →∞) is related to the free energy of its mirror

E(L) = Lf (L)

Free energy f can be found from the Bethe ansatz for the mirror model
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Mirror dispersion relation

The pole of the Euclidean two-point function

H2
E + 4g2 sin2 pE

2
+ 1

In string theory: HE → −iH, pE → p =⇒

H =

√
1 + 4g2 sin2 p

2

In mirror theory: HE → p̃, pE → iH̃ =⇒

H̃ = 2arcsinh

√
1 + p̃2

2g

Magnitude of the correction (L ≡ J) at weak coupling

magnitude ∼ e−LH̃ = e−2Jarcsinh
√

1+p̃2
2g

g→0∼ g2J

(1 + p̃2)J + . . . ...

Ambjorn,Janik,Kristjansen ’05



Emergence of integrability in gauge theory AdS/CFT duality conjecture String integrability and spectral problem

Mirror dispersion relation

The pole of the Euclidean two-point function

H2
E + 4g2 sin2 pE

2
+ 1

In string theory: HE → −iH, pE → p =⇒

H =

√
1 + 4g2 sin2 p

2

In mirror theory: HE → p̃, pE → iH̃ =⇒

H̃ = 2arcsinh

√
1 + p̃2

2g

Magnitude of the correction (L ≡ J) at weak coupling

magnitude ∼ e−LH̃ = e−2Jarcsinh
√

1+p̃2
2g

g→0∼ g2J

(1 + p̃2)J + . . . ...

Ambjorn,Janik,Kristjansen ’05



Emergence of integrability in gauge theory AdS/CFT duality conjecture String integrability and spectral problem

Mirror dispersion relation

The pole of the Euclidean two-point function

H2
E + 4g2 sin2 pE

2
+ 1

In string theory: HE → −iH, pE → p =⇒

H =

√
1 + 4g2 sin2 p

2

In mirror theory: HE → p̃, pE → iH̃ =⇒

H̃ = 2arcsinh

√
1 + p̃2

2g

Magnitude of the correction (L ≡ J) at weak coupling

magnitude ∼ e−LH̃ = e−2Jarcsinh
√

1+p̃2
2g

g→0∼ g2J

(1 + p̃2)J + . . . ...

Ambjorn,Janik,Kristjansen ’05



Emergence of integrability in gauge theory AdS/CFT duality conjecture String integrability and spectral problem

Mirror dispersion relation

The pole of the Euclidean two-point function

H2
E + 4g2 sin2 pE

2
+ 1

In string theory: HE → −iH, pE → p =⇒

H =

√
1 + 4g2 sin2 p

2

In mirror theory: HE → p̃, pE → iH̃ =⇒

H̃ = 2arcsinh

√
1 + p̃2

2g

Magnitude of the correction (L ≡ J) at weak coupling

magnitude ∼ e−LH̃ = e−2Jarcsinh
√

1+p̃2
2g

g→0∼ g2J

(1 + p̃2)J + . . . ...

Ambjorn,Janik,Kristjansen ’05



Emergence of integrability in gauge theory AdS/CFT duality conjecture String integrability and spectral problem

TBA equations for pseudo-energies of mirror particles

Q-particles εQ = L eEQ − log
“

1 + e−εQ′
”

? K Q′Q
sl(2)

− log

0@1 + e
−ε

(α)

M′|vw

1A ? K M′Q
vwx

− log

0@1 − e
ihα−ε

(α)

y−

1A ? K yQ
− − log

0@1 − e
ihα−ε

(α)

y+

1A ? K yQ
+

y-particles ε
(α)

y±
= − log

“
1 + e−εQ

”
? K Qy

± + log 1+e
−ε

(α)
M|vw

1+e
−ε

(α)
M|w

? KM

M|vw-strings ε
(α)
M|vw = − log

“
1 + e−εQ′

”
? K Q′M

xv

+ log

0@1 + e
−ε

(α)

M′|vw

1A ? KM′M − log 1−e
ihα−ε

(α)

y+

1−e
ihα−ε

(α)

y−
? KM

M|w-strings ε
(α)
M|w = log

0@1 + e
−ε

(α)

M′|w

1A ? KM′M − log 1−e
ihα−ε

(α)

y+

1−e
ihα−ε

(α)

y−
? KM

The ground state energy E(L) = −
R

du
P∞

Q=1
1

2π
depQ
du log

“
1 + e−εQ

”
Frolov and G.A. ’09

See also Bombardelli, Fioravanti, Tateo ’09; Gromov, Kazakov, Kozak and Vieira ’09

Infinite system of coupled equations. Analysis is underway.
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Konishi operator in perturbation theory

Konishi operator is the simplest non-protected operator in N = 4 SYM:

Tr Φ2
i

It has a susy descendent

Tr(W 2Z 2) → J = 2

Solving BY equations iteratively for M = 2, one finds p1 = −p2 = p with

p =
2π

3
−
√

3g2 +
9
√

3
2

g4 −
72
√

3 + 8 · 8
√

3ζ(3)

3
g6 + . . .

This gives the energy

EBY = 4 + 12g2 − 48g4 + 336g6| {z }
agrees with pert.compt

−(2820 + 288ζ(3))g8 + . . .
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Konishi operator in perturbation theory

Direct field-theoretical computation of the four-loop contribution:

ESYM = 4 + 12g2 − 48g4 + 336g6 + (−2496 + 576ζ(3)− 1440ζ(5))g8 + . . .

Fiamberti, Santambrogio, Sieg , Zanon ’07 (∼ 200 supergraphs!)

Velizhanin ’08 (131015 graphs!)

Compare to the result based on BY equations:

EBY = 4 + 12g2 − 48g4 + 336g6 − (2820 + 288ζ(3))g8 + . . .

Lüscher correction (large L approximation to the TBA equations)

EMIRROR = 4 + 12g2 − 48g4 + 336g6 + (−2496 + 576ζ(3)− 1440ζ(5))g8 + . . .

Bajnok, Janik ’08
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Konishi operator in perturbation theory

Mirror particles
including

bound states

Lüscher corrections: the F - and µ-terms

In relativistic QFT’s the leading correction to single particle energies is due to Lüscher

En(L) = m cosh θn −m
Z +∞

−∞

dθ

2π

cosh(θ − θn)

cosh θn

“
S(θ +

iπ
2
− θn)− 1

”
e−mL cosh θ

| {z }
F−term

+ residues| {z }
µ−term
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Konishi operator in perturbation theory

The leading exponential correction in L was found by BJ by generalizing the Lüscher
formulae

to multi-particle states

to a non-Lorentz invariant case

to non-diagonal scattering

∆En = En(L)− EBY
n (L) =

−
X

Q

Z
dp̃
2π

X
Q1,...,Qn

(−1)F [SQ2a
Q1a(p̃, p1)S

Q3a
Q2a(p̃, p2) . . . SQ1a

Qna(p̃, pn)]e−H̃a(p̃)L

p1, . . . , pn are momenta of physical particles in string theory

p̃ is the momentum of a Q-particle in the mirror theory

The leading large L approx. to the exact TBA should reproduce this formula
For the relativistic O(4), see Gromov, Kazakov, Vieira ’08
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Conclusions

The spectral problem for AdS5 × S5 superstring in the light-cone
gauge P+ = J:

Infinite J spectrum is trivial

Large but finite J spectrum is encoded in the BY equations
based on the known exact S-matrix. Corrections exponential in J
are missed

Finite J spectrum is encoded into an infinite set of coupled TBA
equations in the mirror theory

Lüscher correction perfectly reproduces the direct perturbative
result which goes beyond the validity of the BY equations. Highly
non-trivial check of the mirror theory approach
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