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When we study supersymmetric theories,

N = 4 Yang-Mills or N = 8 Supergravity or
their higher-dimensional versions always pop

up.

In the light-cone formulation
their superbelds are particularly simple.

One can regard them as  master belds for a
series of beld theories.

In light-cone gauge field theory they can be
treated similarly.




Light-Frame Formulation

Dirac showed that any direction within the light-
cone can be OtimeO.

Choose x* = %(x0+ x3) as the time.

The coordinates and the derivatives that we
will use will then be

xt = %(xoixs)
N 1

o~ = ﬁ(—ﬁoias)
X = i(x + iX9o)
g = \%(al—iaz)
B = i(x — iX2)
0 = (o1 + i)

V2




We will only consider massless theories so we
solve the condition p2 =0 . We then bnd

The generator p~ Is really the Hamiltonian

In the light-cone frame the supersymmetry gen-
erator QQ splits up into two two-component
spinor that can be rewritten as two complex
operators, which we call

Qr=-3'4!_Qand Q_=-3_1,0Q.




The light-cone supersymmetry algebra is then

{QY.Q4n} = —V2"tp T
{(QM,Q_n} = —V2''P~
{QT—’Q—H} — _\/Enrl’]np’

The superPoincaré algebra can now be repre-
sented on a superspace with coordinates

x*, X, X, #m, #n

All generators with a minus-component get
non-linear contributions




We will denote the derivatives of the I Os
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The kinematical ¢Os will be represented by
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and the dynamical ones as
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On this space we can also represent " chiral”
derivatives anticommuting with the supercharges

Q.

d7n:u nn N #LQ!TTL"—F) Jn: "n—l—#%!n”_i_.




To bnd an irreducible representation we have
to impose the chiral constraints

dM¢ =0 ; &méd =0 ,

on a complex superbeld ¢(x*,x, & 0™, &,). The
solution is then that

o= ¢(x*,yl = x| %Qm@’m,X, B ).

It is particularly interesting to study the cases

N = 4 # integer. For those values one can
iImpose a further condition on the superpbeld ¢
namely the Oinside outO condition
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When % is odd, the superfield has to trans-
form as the adjoint representation of an exter-
nal group with structure constants f @°¢,
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The N =4 Yang-Mills Theory

This was the first action we constructed
| !

S = | Jd% d4@d4§

1" # $
abc b

¢8+2¢+ =y +¢¢8¢ +c.c.
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With this action we (Brink, Lindgren and Nils-

son 1982) proved that the perturbation expan-
sion is finite.




The N =8 Supergravit@action to Prst order is then

us + H

d*x BrderL $ L,
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How do we construct thefour-point functior?
We can do it by trial and error.
Too hard.

HE& & #H&& # + c.c.)

Instead we found a remarkable property of
maximally supersymmetric theories.
(with Ananth and Ramond)




The Hamiltonian as a Quadratic Form

The usual relation is that

= Z{QmaQ' m}

For both N=4and N =8

I
H = 6@m$5Q!m¢

Not an anticommutator, but a quadratic form.

With this form we could run a Mathematica program
comparing with the four-point function of gravity.

The result was a four-point coupling wifit terms.
(In the covariant form there are abo®000terms.)
with Ananth, Heise and Svendsen.




Higher Symmetries for N = 4 Yang-
Mills T heory

We know that the d = 4 theory is conformally
invariant, i.e. under PSU(2,2|4) even for the
quantum case. We can in fact construct the
whole theory by closing the conformal algebra
by guessing the correct dynamical supersym-
metry generator Q) .

This scheme can be followed for all superconformally
iInvariant beld theories, also for d=3 or d=6. | had

planned to talk about d=3, but we still miss something
there.




(With Kim and Ramond)

Higher Symmetries for N = 8 Super-
gravity T heory

N — 8 Supergravity, unlike N = 4 Yang-Mills,
is not superconformal invariant, however, it
does have the non-linear Cremmer-Julia E7(7)
symmetry.

How do we implement thes ) symmetry?

Go back to covariant component form (Crem-
mer, Julia and Freedman, de Wit)

L = Ls+ Ly *+ Lothers

Lg is a Coleman-Wess-Zumino non-linear La-
grangian . The E ) Is clear.




Ly, can be written as

. 1 ol 37
Ly = | QF/J ZJGM!

The Lagrangian is quadratic in the field strengths.
Introduce the self-dual complex field strengths

} ! } L #
FHVI — % FHYi R il
and

} ! } L #
Ghvii  — % GHYIl - jEHvil

The equations of motion are given by

! . H#
QUIG,u/m/j — au GHV 1] + GIWU =0

Y

while the Bianchi identities read

! L
8/1/}"7’ﬁu/i] — 8# FHY ] | F,U/I/I,J ~ 0




Assemble in one column vector with 56 com-
plex entries

ao 'Gu!ij+ (VU] ) 'xu!ab
25 = autig pml i y H! L

where a, bare SU(8) indices, with upper(lower)
antisymmetric indices for ~ 28(28).

This is a 56 under Ez7) .

The 70 transformations are
" lab _— —abcd !
X H-ab = =abtdy i cd

n I — | cd
YH ab :abcdx H ,




We now specialize to the light-cone gauge. We
choose AT = 0 and solve for A' . We then
make non-linear field redefinitions, AY " BY
and ¢k Dijkl to get rid of " time derivatives”
in the interaction terms.

T his will mix up the fields a.nd the Hamiltonian
IS no longer quadratic in B,

We can now read o! the E;7)/SU(8) trans-
formations in the vector and scalar fields.

However, the other Pelds now take part
In the transformations!




E
The SJEQ) quotient symmetry must commute
with the other symmetries in particular with

the supersymmetry. [!70,!g]" = 0.
(There is no E;(7) supergroup.)

By using that we get the transformations for
all fields in the multiplet.

E7(7)
How can SU(8)

not, and

commute when SU(8) does

['70,'70] ='su(s)?
Consider the Jacobi identity

([['70.'70] . ' sl+I['s: ' 70l s ' 70l + (' 70: ' s] P 70])"

Since ['g,!70]!'70" & 0O, it works! !-5" non-
linear! We only claim that [lg,!70]" = 0. All
fields including the graviton transform under

Ez@) :
SU(3) and into each other.




Some of the transformations

Vectors:
!
1By = ! | zKmn %EM Bmn + jl 1+ Dumn " Bjj ! %#ﬁ,—mmms éBfS"*h
3|,,+$k|m i ! é#mmrst Lo
+1 Eijkl i+ %Dklmn "B éBk' n+2
4(3|)2$mnp $, KImOPrSt 3 é$k'“ "t %, (1)
Gravitini:
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Gravition:
!
lh = 1 1 =M liﬁmnpq "Th o+ %Emn Bpg + %$mnp % - ()




We then bnd that we can write the order !
transformation as

|
"4 ~_ | mnpq

This expression is in fact unique! It can be

rewritten in a very e " cient form

! 1 # $ ?
+ % mnpg ® %0
where &= ¢
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The Hamiltonian

We write

s o= IO,y gDy IRy ok

We can now require

[670, 6D = 0

Here we can use the inhomogeneity of the 70
transformation

(170", 6™ T 1720® 68" 1 = 0

This gives the order k2 dynamical supersym-
metry. We can the use the quadratic form to
bnd the Hamiltonian to order 2. Much simpler
than before!




Possible counterterms for N=8

Let us check brst in gravity. We can write the three
point coupling as

sih = w*n[eaga*mhe! aga*%]

2 . .
= m*”((%) 97 mhe g™

a2

a=0

A possible one-loop counter term Is

| g
§fh = g301t" EOT™hE' 19t™h #

a3,b
E = eaf+bf and E'l=¢ all b’ | N\

Consistent with the algebra for two choices wfandn




This can In fact be generalized to all orders.
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There Is another series starting with

1 I II#

g2 — ) ] n +4 I 1n +4 #
12h = E"HAE AR
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We are Interested In counterterms which are non-
zero when we use the equation of motion.

" |ﬂ
T

All but the third terms can be written agg  (..h...h)

""'h = #h = h+ O(l).




We only bnd a two-loop three-point counter term.
Consider a three-loop term

p ™~

Goes like [dpl2 P 1 p8

10
14

©

Terribly divergent but must be! pi?  where
| =1,2,0r 3.




N=8 Supergravity

There are no three-point counter terms fax = 8

S %= ..(.. 9

since the r.h.s. Is not chiral

When we consider the four-point coupling we have to
use the &7 symmetry. Remember how we obtain the

four-point coupling.

[6,00' 1), ) dyn (2) 1" +[ d70W | dyn (0) 1" =0

y + S

The terms talk to each other pairwiséhey have the
same number of derivatives.




A four-point counterterm 3" () - must satisfy

[570(! 1)’ '(Sj}é:n (2)]" — 0

Furthermore it has to satisfy all the commutations
rules with the fullN = 8 superalgebra.
Well-dePned problem but algebraically difPcult.
We still do not have the Pnal result.




