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Confinement criteria in a pure glue theory (no dynamical quarks):

1) Average Polyakov line
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<Tr L(z) > = <Tr73 exp <z/ A4dt>>
0

_ e_Mquark/T =0 below Tc
# 0 above T,

2) Linear rising potential energy of static quark and antiquark
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3) Area law for the average Wilson loop
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4) Mass gap: no massless states, only massive glueballs
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We shall consider quantum Yang-Mills theory at nonzero T, as we shall be
interested not only in confinement at small T but also in the deconfinement phase
transition at T>Tc. Quarks are switched off.

According to Feynman, the partition function is given by a path integral over all
connections periodic in imaginary time, with period 1/T :
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A helpful way to estimate integrals is by the saddle point method.
Dyons are saddle points, i.e. field configurations satisfying the non-linear
Maxwell equation:

ab 2b ab __ ¢ab acb j4c
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Bogomol’'nyi-Prasad-Sommerfield monopoles or dyons are self-dual configurations
of the Yang-Mills field, whose asymptotic electric and magnetic fields are Coulomb-
like, and the eigenvalues of the Polyakov line are non-trivial.

For the SU(N) gauge group there are N kinds of elementary dyons:
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hence, “dyons”
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p1 < pe < p3 < pi+1, p1+pa+p3=0.

Inside the dyons’ cores, whose size is AL the field is large and, generally,

27T (poym, —

time-dependent, the non-linearity is essential. Far away the field is weak and static.



In the saddle point method, one has to compute small-oscillation determinants
about classical solutions.

The small-oscillation determinant about a single dyon is infrared-divergent
(because of the Coulomb asymptotics at infinity)

I:> isolated dyons are unacceptable, they have zero weight

One has to take neutral clusters of N kinds of dyons. The corresponding
exact solutions are known as Kraan-van Baal-Lee-Lu (KvBLL) calorons
or instantons with non-trivial holonomy (1998).

The KvBLL instantons generalize standard instantons to the case when
the Polyakov loop (the holonomy) is nontrivial, u, po, ... ux # % k=0,1,...,(N—1)

The analytical solution shows what happens when dyons come close to each other:
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Action density as function of time of three dyons of the SU(3) group.
At large dyon separations, we have three static dyons.
When dyons merge, they become a standard time-dependent instanton. ﬁ

In all cases the full action is the same.

The small-oscillation determinant about KvBLL instantons is finite;
computed exactly by Diakonov, Gromov, Petrov, Slizovskiy (2004)
as function of

* separations between N dyons

* the phases of the Polyakov line w1, pa, ..., un
s temperature T

* A, the renormalized scale parameter



The 1-loop statistical weight (or probablity) of an instanton with non-trivial holonomy:

W = /d,xl...de det G FV.
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Um = MWmtl — Mm, > Um = 1. Gibbons and Manton (19995); Lee, Weinberg
and Yi (1996); Kraan (2000); DD and Gromov

The expression for the metric of the moduli space G is exact, valid for all separations
between dyons.

If holonomy is trivial, or T -> 0, the measure reduces to that of the standard instanton,
written in terms of center, size and orientations [Diakonov and Gromov (2005)].



The perturbative potential energy (it is present even in the absence of dyons )
as function of the Polyakov loop phases u.,, :

2m3 N
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m>n mod 1

It has N degenerate minima when all ©» are equal (mod 7) i.e. when
the Polyakov loop belongs to one of the N elements of the group center:

2mik
L =e N diag(1,1...1) € Zy, k=1,2...N.

In perturbation theory, deviation from these values are forbidden as exp(- const.V).

For confinement, one needs Tr L = 0, which is achieved at the maximum of the
perturbative energy!
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Perturbative potential energy has N minima corresponding to trivial holonomy:
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However, the non-perturbative free energy of the ensemble of O(V') dyons
has the minimumat 7TrL = 0! Atlow T it wins ———> confinement!
[ DD (2003) ]

At T<Tc the dyon-induced

i 0
free energy prevails and Omi
forces the system to pick L= 0 es 0 for SU(3), TrL =0

the “confining” holonomy 2%



To see it, one has to calculate the partition function of the grand canonical
ensemble of an arbitrary number of dyons of N kinds and arbitrary u,,’s,
and then minimize the free energy in  p,,,'s

(and also compute the essential correlation functions).

fugacity, function of T, A
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moduli space metric,
function of dyon separations

K,, number of dyons of kind m ° ‘@

xmi 3d coordinate of the /-th dyon of kind m ‘. @
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G is the “moduli space metric tensor” whose dimension is the total # of dyons:
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Properties:

1) the metric is hyper-Kaehler (a very non-trivial requirement)

2) same-kind dyons repulse each other, whereas different-kind attract e.o.

3) if dyons happen to organize into well separated neutral clusters with N
dyons in each (= instantons), then det G is factorized into exact measures!

4) identical dyons are symmetric under permutations: they should not “know”

what instanton they belong to!

This is an unusual statistical physics based not on the Boltzmann exp(-U/T)
but on the measure det G; it can be written as exp(Tr Log G), but then there
will be many-body forces!



It turns out that this statistical ensemble is equivalent
to an exactly solvable 3d Quantum Field Theory!

Use two tricks to present the ensemble as a QFT:

1) «fermionization» [Berezin]

anticommuting
det G = /H dv,bL di s exp (1,0:[4 GaB v,bB) Grassmann variables
A

2) «bosonization» [Polyakov]

auxiliary boson field

exp (T;l IXim—Q;nl) = /D¢ exp (— /dx(ai¢ai¢ + P¢))

1

= exp (/PZP)a p=> Qmd(x —xm)

Here the «charges» Q are Grassmann variables but they can be easily
integrated out [ Diakonov and Petrov (2007) ]



The partition function of the dyon ensemble can be presented identically
as a QFT with 2N boson fields v_m, w_m, and 2N anticommuting (ghost) fields:
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1st result , 1t criterion of confinement:

The minimum of the free energy is at equidistant values of
corresponding to the zero average value of the Polyakov line!

Indeed, the dyon-induced potential energy as function of #m ,

1
P = —4xnf N (v1vs...vN)N, vi+uva+...+vy =1,

VUm = Bm+1 — Hm

has the minimum at

i.e. at equidistant tm , which implies TrL =0'!



Confinement-deconfinement in the exceptional group G2 ?

rank=2, trivial center (contrary to SU(N)!), lowest dimensional representation dim=7.
Question: is there a confinement-deconfinement phase transition in G2 ?
Lattice answer [Pepe and Weise (2007), Greensite et al. (2007), Di Giacomo et al. (2007)]: Yes!
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Figure 4: Polyakov loop probability distributions in the region of the deconfinement
phase transition in (3+1)-d G(2) Yang-Mills theory. The temperature increases from
left to right. The simulations have been performed on a 20® x 6 lattice at the three

Since G2 is centerless, the transition cannot be attributed to the spontaneous breaking of center symmetry.
Dyons explain < TrL > =0 at low T, and a first order phase transition at a critical Tc !
At low T<Tc, the free energy induced by dyons, has the minimum at

L = diag (exp(2 pi i (-5/12, -4/12,-1/12, 0, 1/12, 4/12, 5/12)), TrL=01

G2 instanton is made of 4 dyons of 3 kinds:



Contour plots of the effective potential as function of two eigenvalues of A4 :




The correlation function of two Polyakov lines defines the potential energy between
two static quarks:

Vix— :
<TrL(x)TrL‘L(y)> — C exp <_M> quark antiquark
r 00000099
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2nd result , 2" criterion of confinement:

The potential energy of static quark and antiquark is linearly rising with
separation, with a calculable slope, or string tension.

The string tension has a finite limit at small T.
It is stable in the number of colours Nc, as it should be.



3d result, 3d criterion /W—Pexp iIAi dX/~exp(— o Area)

Along the surface spanning the loop there is a large (dual) field, “the string”,
leading to the area behaviour of the average Wilson loop !

At low T the “magnetic” string tension c%incides with the “electric” one,
as it should be: Telectr = Tmagn ; " — 0

The Lorentz symmetry is restored, despite the 3d formulation.
Moreover, in SU(N) there are N different string tensions, classified by

the “N-ality” of the representation, in which the Wilson loop is considered.
We find

2 the results for the two string tensions
A N, . 7wk
Telectr (k) = Omagn(k) = — — sin — are the same although they are
Ne computed in two very different ways

for the rank-k antisymmetric tensor representation.

The string tension in the adjoint representation (k=0) is asymptotically zero.



4% result, thermodynamics of the deconfinement phase transition:

In the confinement phase, the free energy is

F 2 A* 47T2 2 1 471'2 2
o =-N —|—T—<N >—T—(Nc—1)

222 45 \"'¢ N2 45
dyon-induced perturbative energy Stefan-Boltzmann
at maximum

(’)(Nf) gluons are cancelled from the free energy, as it should be in the
confining phase!

The 18t order confinement-deconfinement phase transition is expected at

i 45 N, A*
¢ 2wt N4 —1 )2

(At Nc = 2 the free energy depends only on one variable, and the phase
transition is explicitly 2"9 order, in agreement with the lattice data.)



Critical temperature T_c in units of the string tension for various numbers N_c :

N.—3 4 6 8

T./+/o, theory 0.6430 0.6150 0.5967 0.5906

T./\/o, lattice | 0.6462(30) | 0.6344(81) | 0.6101(51) | 0.5928(107)

[lattice data: Lucini, Teper and Wenger (2003)]

Another important quantity characterizing the non-perturbative vacuum —
the “topological susceptibility” :

for N. = 3.

1
(< Q'_2r >)4 B 0.439, theory
Vo | 0.434(10), lattice



of N kinds of dyons has been computed exactly to 1-loop

2)  Statistical physics of the ensemble of interacting dyons is
governed by an exactly solvable 3d QFT

3)  The ensemble of dyons self-organizes in such a way that
all criteria of confinement are fulfilled

Non-trivial holonomy allows the existence of dyons,
dyons request the holonomy to be maximally non-trivial !

4)  All quantities computed are in good agreement with lattice data




