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a short discussion on

¢ cosmic ray acceleration basics
¢ propagation
¢ acceleration

+ observational evidences

+ shocks in heliosphere: termination shock, coronal
mass ejection driven shocks, planetary and
cometary bow shocks, co-rotating interaction
regions, merged interaction regions, ...



CR acceleration in a nutshell

+ cosmic rays are coupled to thermal plasma by
magnetic irregularities

+ MHD waves, turbulence
¢ gyro-resonant scattering

¢ cosmic ray streaming generates waves

+ the magnetic irregularities are pushing and
banging the cosmic rays around
+ random pushing or systematic pushing
* net gain in particle energy in the process



propagation



CR propagation

¢ assume enough scattering so that the
distribution function is more or less isotropic

+ self-excited waves, e.g., forward and
backward propagating Alfven waves

gyro-resonant scattering -
l—{ Alfven waves ‘
‘ cosmic ray streaming instability

‘ cosmic rays




CR propagation

¢ cosmic rays couple to plasma via
hydromagnetic waves

¢ waves scatter cosmic rays (e.g., gyro-
resonant scattering)

¢ cosmic rays advect (and drift) and diffuse In
space and momentum

¢ waves are excited when cosmic rays stream
through the plasma

¢ equations for CR transport and wave energy
exchange (e.g., Alfven waves)
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energy exchange

work done by plasma

Alfven waves ﬁ

streaming stochastic

instability acceleration plasma

cosMic rays <—T

work done by plasma
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energy exchange

¢ cosmic rays

¢ gain or loss energy via work done by plasma,
adiabatic deceleration, cosmic ray streaming
Instability
¢ gain energy via stochastic acceleration
+ Alfven waves

¢ gain or loss energy via work done by plasma,
cosmic streaming instability

+ loss energy via stochastic acceleration



acceleration



Fermi acceleration

¢ energy gain for each collision
(B=vlic, B= WIo):
* Aele ~ -2B3cos0 + 2B (for B~ 1,8 <« 1)
¢ stochastic acc. or

+ taking care of probability of head-on and
overtaking collisions

+ the average energy gain: (Ae/e) ~ 4/32/3

+ shock acc. or
¢ a round trip across the shock (i.e., two coII|S|ons)
* the average energy gain: (Ae/e) ~ 453/3

+ poth first and second order Fermi processes
can produce power law



how to get a power law?

+ after each interaction or acceleration

* the ratio of the new energy to old energy is
constant €,/e, = A

¢ particles retain in the acceleration site with a
certain probability n/n, = E<1

+ after m interactions there are n = nyE™
particles with energies € = ¢,A"

* thus a power law:
* n(>e) = ny(eley) @, a = -logE/logA



how to get a power law?

* particle gain energy at time scale 7, (or all €)
* € = gexp(tr,)
* particle escape at time scale 7, (or all €)
* n(>e) = nexp(-tr,)
* thus a power law:
* n(>e) = ny(eley)®, a = 1, /7,
+ smaller 7 gives harder spectrum



diffusive shock acceleration

+ plane shock with upstream velocity { and
compression ratio A

* A~ 1+ 4(R-DHU3BRc

* Ex1-4U/Rc

¢ power law index: a = 3/(A-1)

¢ differential spectral index: a+1 = (R+2) /(R-1)

¢ for strong shock and y = 5/3, a+1 = 2
¢ for strong shock and y = 4/3, a+1 = 3/2



modified shock

+ plane shock acc. is very efficient
+ packreaction on the flow

¢ cosmic ray dominated shock
¢+ may has a precursor and a subshock
¢ or may become a smooth transition altogether
+ overall compression ratio may increase gquite a lot
* high energy particles have larger diffusion
coefficient and feel a larger compression ratio

¢ harder spectrum at high energy
¢ concave spectrum for strong shocks



upstream velocity cosmic ray distribution

completely dominated downstream velocity

N

. cosmic ray distribution
upstream velocity

. downstream velocit
with subshock ‘ y




log (p* 7(p))

schematic spectrum
of modified shock

log p



observational evidences



shocks, shocks everywhere

from interplanetary shocks to

stellar wind termination shocks to
supernova remnant shocks to

merger shocks to ...



heliospheric or interplanetary
shocks (collisionless)

¢

*

*

termination shock
CME driven shocks

planetary and cometary
bow shocks

CIRs and MIRs

¢

¢

*

/n sity measurements
energy spectrum
composition

temporal variation
magnetic field

waves

plasma properties

seed



termination shock



voyager 1 and 2
have crossed
the heliospheric
termination shock



Voyager 1 & 2
(Voyager Interstellar Mission,VIM)

position at 2009.05

at 3.3 AU/year

launch termination Shock | heliopause
(heliospheric inertial) P
34.3° latitude crossed TS on
173.4° longitude 130-150 AU?
Voyager 1 1997.09.05 o 2004.12.16 _
110 AU in 2014-20177?
at 94 AU
at 3.6 AU/year
-28.5° latitude, 4TS
: crosse on
216.7° longitude 130-150 AU?
Voyager 2 | 1997.08.20 9 2007.08.30 _
89 AU in 2014-20177?
at 84 AU
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http://sd-www.jhuapl.edu/VOYAGER/iptraj.html

voyage to the edge
of hel

SE
/HELIDFIU

Particle anlsntrnp:es Interstellar
T T 1 : == gas flow

Voyager 1

Astronomival units

Anomalous &
galactic cosmic rays

counterclockwise from top right [pervade entire region
Frisch et al. APOD20020624 '
voyager.jpl.nasa.gov/mission.html
Decker et al. (2005)

|

High energy (=3 MeV) particles Low energy (=40 KeV) particles




LL Orionis
HST « WFPC2

heliosphere is just one
more bubble in the sky
but smaller

0.1 parsec

0.25 light-year

Helix Nebula
HST = ACS/WFC
KPNO 0.9m Mosaic | Camera

LMC N44F (NGC 1763)
HST WEPC2 1
' You-Hua Chu {University of lllinois)

2 light-years

35 light-years -

0.6 parsecs 10°.6

11 parsecs

wind bubble from hot star | planery nebula



how do we know Voyager 1 & 2
crossed the termlnatlon shock?

Voyvager 1 Magnetic Field

Helicsheath |

+ Voyager 1 crossed the
shock at 94 AU

¢+ magnetic field strength
and its fluctuations
+ 3 times increase In

i i I i | I
50 100 150 200 250 300

magnitude right across | DOY from 2004.0
the ShOCk M: 1ME‘:'l-::'::Ia‘:i' u'é‘j Heliosheath
+ field in heliosheath is 2.4 < i’ ” nw,h
times the average mdy *3 f
upstream f|e|d Dz:ﬂa N T sia ENE T T

+ larger fluctuations after
shock crossing

Bu rlaga et al . 2005 nn;ns‘ 4-:..4!?: .. ..-;...a ._.-.:.., /,; .‘:_:_, ._1--.4-_ g-.g_ =

DOY 2004



supercritical quasi-perpendicular

Voyager 2 crossed the
shock at 84 AU

velocity jumps

5 shock crossings

¢ probably temporal
TS-3 is a typical
supercritical quasi-
perpendicular shock

Burlaga et al. 2008
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pickup ions dominated

+ energy (flow plus
thermal) of solar wind
measured by Voyager 2
drops ~ 80% across the
shock

¢ supersonic downstream

+ large portion of energy
goes to pickup ions

Richardson et al. 2008
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| v2: 0.028-3.5 MeV |

pickup lons dominated / /| vi: 0.04-4.0 mev |
e 7|  field |

||||||||||||| Ay ALRREES LERERRERRNRAEEE ERAEN LERLY LE)
i

¢ pressure of energetic
lons (several hundreds
keV to several MeV) is
comparable (or exceeds)
both thermal and
magnetic pressures

¢ detected energetic
neutral atoms (—~ 4-20 ol
keV) is similar to SW gg
pickup ions in spectra gﬁ o f
¢ pickup ions acclerated by 5

TS and then charge
exchange again

I indenalty [probons omd 87 a1 MeV-) Partial lon pressing |dynes crir)
I = . T IIlIIlI.I T IIIII1I‘ hikbl | T Il1!l-. L |

Decker et al. 2008



LISM B field

the solar wind
termination shock is a
pick-up ions modified
supercritical
guasi-perpendicular
asymmetric shock

Opher et al. 2008



how about energetic particles?

10 "0 iR IR I
¢ termination shock particles E
(TSPs) ;
+ e.g., protons at several MeV H 109
+ anomalous cosmic rays T -
(ACRS) * 1o

¢ roughly 10-100 MeV/nucleon o ol g

* He, N, O, Ne, etc. ) i Y T

+ galactic cosmic rays (GCRs) ;| '&ae%:?‘ff“j

" o0 Mey i

+ mostly proton . ”'1: vt Acre m;ﬁﬂ,

Tt v e i

- mﬁ‘
Stone et al. 2008 lETrT e T
1 EnergﬂM‘aE:.fpernmlaﬂnﬁ 1




termination shock particles (TSPs)

Distance of Voyager 1 from Sun (AL
35353!'3&8990919?%*95969?
L I S o O A I L O LN O |

¢ TSPs upstream of the shock - « 3
at V1 is anti-sunward, while i
at V2 is sunward .
(connection to the source?)

+ roughly isotropic in the "
heliosheath A = RO

+ strongly affected by g5 0 A
heliospheric disturbances i~ 1
such as MIRs A s =

gﬁ 100 uﬁ

Stone et al. 2008



anomalous cosmic rays (ACRS)

Interstellar neutrals ionized by solar UV
pickup by solar wind
at ~ 1 keV/nucleon
then accelerated by
TS (and beyond?) to
> 10 MeV/nucleon



http://www.swri.org/3pubs/ird2004/Synopses/159352.htm
http://www.swri.org/3pubs/ird2004/Synopses/159352.htm

ACRS

further into
heliosheath

[ | further further
Into heliosheath

¢ for both shock crossings

ACR intensity does not
peak at the shock as

expected

+ still substantially modulated
in the heliosheath
* the spectrum does not
change and the intensity
does not increase Cross

the shock

upstream

- \V1 JACR He
o | . :
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=
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Stone et al. 2005




ACRS

* low energy ions (< 3 MeV per nucleon) are
accelerated rapidly in nearby TS, while ACRs are
accelerated further away

¢ continue modulation in heliosheath is due to temporal
variation (?) or magnetic topology (?)

+ source of ACRs may be at the flank or tail of the
shock (a blunt TS) or in the heliosheath

+ diffusive shock acceleration may still be alright
¢ pboth ACRs and TSPs are accelerated pickup ions

+ two stages acceleration(?): first accelerate TSPs,
then accelerate ACRs later
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McComas and Schwadron 2006




galactic cosmic rays

+ solar modulation

+ V1 & V2 measure a
small intensity gradient
of GCR helium

¢ either the gradient or
modulation is further
out in the heliosheath

+ or the interstellar GCR
flux 1s lower than
expected
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Interplanetary shocks



connection to earth

magnetic field

~ energized particles

adapted from Lee 1983



ACE measurements
2000.06.20~2000.06.26

typical IP shock <

10°

Upstream’ [
I L
| ‘éi-le

10

10°

¢+ most interplanetary
shocks are CME driven

particles/(cm® s sr MeV/nuc)
o

shocks 1f' : 3
* in situ measurements B\t i o s e e e
by ACE, SOHO, WIND, f o eI I N T
Ulysess, Voyagers, 3 T
IMP8, ISEE3, Goes, etc.  §"“pit
+ particles are energized e
¢ seed population? < 1§
¢ location? _ ggg ==
* self-excited waves? £ . : ;
* modified-shock? R e o
L 2 June 2000, UT Date

Desal et al. 2003



solar energetic particles (SEPs)

associated
with CMES?

)

s MeV

Particlesi{cmz sr

two types: gradual and impulsive
different isotopic compositions

4
o Tt Tt T T
-(a) Gradual "Proton” Event

q9 ErTTrTTTTTTT [rerereT [rrrrreTT [rrrrrT ]
3 F (k) Impulsive "3He-rich" Events

MeV —
x 0.2-2 Electron
o 1-4 Proton
o 7-13 Proton =
o 22-27 Proton

associated
with flares?
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acceleration sites for SEPs

+ solar flares or CME driven shocks
¢+ common view (but not all) is CME driven shocks

¢ how do we know
¢ timing
¢ gspectrum and intensity of anisotropic ground-level events
(GLEs)
¢ GLE-associated with CMEs
¢ solar gamma ray line flares has little correlation with SEPs

‘ LI



seed population

* solar wind ions or
suprathermal ions?

+ abundance observation
of IP shocks at 1 AU
Indicates seeds come
from suprathermal ions
pre-accelerated by solar
flares or other IP shocks

+ two-stage acceleration

+ 3He rich events
associated with solar

flares

Shock/Slow Solar Wind, T,

Shock/Upstream, T,
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self-excited waves

+ the idea Is waves excited upstream of the shock by
energetic particles trap the particles for further
acceleration

* the breaks in these spectra may be an indication of
proton-excited Alfven waves (e.g., due to saturation)
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|, particles / (em” s sr)

quantitative fitting of an
energetic storm particle
1o (ESP) event on
| 1978.08.27
P solid line (dotted line):

with (without)
self-excited Alfven waves
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modified shock?

+ at strong shock, when ' Bl moy e
accelerated particles z |
gain enough energy, $ 1 A 118 m]
backreaction will take § - il ]
p|ace g : 3 :,‘ ‘ '";1.? |

¢ SEPs suck up ~10% of i ““*
CME’s energy e A
(dissipation of CME, * c;:"mm;fm“:; w

modified shock?)
Mewaldt et al. 2005



1994.02.21 event 2003.10.29 event (Halloween event)
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complications

3 O E LIl T T
+ both 3He and “He intensities 2 o} J:*x @]
are increased at CME 5 0 b e e
magnetic compression S W’ ““”w
region (C) and CME fast ; RIS

forward shock (S) \/ I X;L

1999, UT Date

+ 3He/*He enhancement with 2 1323““’] £ 1$3H(c)
respect to solar wind ot T R Y e
: : L. : 3z ¢ 91 &

* lon Intensities at (C) Is 5 { 5 _
Iarger tha‘n a't (S) Indlca‘tes : M:les(nicleunﬁsj ° ‘ h::ass{:udmgs} °

shocks are not the only
acceleration mechanism in
Interplanetary space

ACE news #44, 2000.04.25
(Desal et al.)



factors affecting IP shock acc

¢

*

*

*

*

¢

shock strength, velocity, size and curvature, lifetime, etc.
guasi-parallel and quasi-perpendicular
seed populations
¢ solar wind suprathermal
+ solar flare suprathermal
CMEs may or may not have associated shocks
direction of CMEs propagation and connectivity

a lot of things to be disentangled



location, location, location ...
connectivity Is important to interpret data

particle intensity may rise or fall after
shock crossing

A —

¥
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2% P 27 MW 2 M N i
BIDec 81




Slow
Solar
Wind

Salar

Material

Fractionation

Caronal
Material

Solar Wind
Acceleration
Machanism

complicated

business

AHe-rich
Solar Flare
Accelelration

/

Fast
Solar
Wind

Solar
Wind

Interplanetary
Suprathermal lons

Innear
Source
(dust?)

Interstallar
Pick up
lans

_—

G | i )
:‘:;2& Tr;:zl;nt Corotating
— Int. Regicns
Ejections Accaleration
Transport Transport Transport Transport
to 1 Al to 1 AL to 1 AL to 1 AU
3He-rich CME ESP
SEP Assoc Events

Events

SEPs




some statistics

354 shocks

* how does energetic gL LI L P

particle relate to shock
parameter?

¢ no apparent trend from
shock angle and speed
(except maybe shock
speed has to be large
enough for large
Increase In intensity)

Cohen et al. 2005



100 [l Clossic
- e et 162 fast forward IP shocks
2 s (CME related)
§ 60 -f‘}r;Z;é?‘
L i CINothing
s 40r
® 20 : R
OE | )| 11| 10| 16|26 | 32|20 | 32] ACE news #93, 2005.11.07

0 10 20 30 40 50 60 70 s oo (Larioetal)
8gn [deq]

+ shock parameters may not govern the associated
energetic particle event
+ maybe the energetic particle event is a history of injections
and accelerations (by other shocks or accelerators), while
the shock is measured locally
¢ about a quarter of the shocks do not affect the pre-
existing particle intensities (no shock acceleration?),
and another quarter of the shocks do not have
obvious relation with the variation of particle
Intensities

* mostly these correspond to slow and weak shocks, but also
happen in a few strong shocks



cometary bow shocks
Or waves



comets we have visited

Comet Satelite FYY | neasarement | measuroment
21P/Gaicobini-Zinner | ICE 11th Sep 1985 - -
1P/Halley Giotto 14th Mar 1986 - -
26P/Grigg-Skjellerup | Giotto 10th Jul 1992 X X
19P/Borrelly Deep Space | | 22th Sep 2001 - -
81P/Wild 2 Stardust 2nd Jan 2004 X X
9p/Tempel 1 Deep Impact | 4th Jul 2005 X X




cometary shock? wave?

¢ the vicinity of comet Is Halley Vegs Giotto
very turbulent o

* It is difficult to identify
the bow shock (or there Turbulence
IS N0 bow shock?)

+ not usual foreshock

waves by reflected or
accelerated solar wind
lons

¢ can associate with
passage through pickup |
region of energetic
cometary ions

Energetic
pickup ions

Ip and Axford 1986




cometary shock? wave?

¢ energetic ions in extended region
¢+ 4 10° km (comparable or larger than the coma)
+ perhaps due to charge exchange again and again

¢ energetic ions are singly ionised ions from the water
group from comet

¢ isotropic in pitch angle in local solar wind frame

¢ created far upstream then accelerated by Fermi
acceleration, wave-particle interaction, pickup at
higher solar wind regions, or compression of
magnetic field

¢ second order Fermi process in action?



present status

* theoretical basis of cosmic ray acceleration Is
sound

+ theories become very sophisticated

+ pbut most of the time still cannot match the
complications revealed by /7 situ
measurements

+ shock acceleration is perhaps the major
mechanism but definitely not exclusive

+ the role of geometry, temporal change, waves,
pickup ions, accelerated ions, etc.



still lots of things to do

as usual




the end
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