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Magnetic Reconnection on the Rise!

Magnetic Reconnection

* An IS search by topic found >5,300 papers from 1957-2007 on reconnection
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RECONNECTION: INTRODUCTION

Q: What is magnetic reconnection?

Magnetic reconnection s a rapid rearrangement of the
magnetic field topology.

e Reconnection leads to a rapid, violent release of magnetically-
stored energy and its transformation into:

— heat — plasma thermal energy
— bulk-motion — kinetic energy

— nonthermal particle acceleration — cosmic rays
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RECONNECTION IN ASTROPHYSICS:
Flaring Young Stars

Chandra X-ray Image of Orion Nebula
(COUP — Chandra Orion Ultradeep Project)
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RECONNECTION IN ASTROPHYSICS:
Regular Solar/Stellar Flares

Smaller Flares: L < R, — usual stellar (e.g., solar) flares.

© -— Approx. size of Earth

SOHO UV (He)

Solar flares are the most energetic events in Solar System.
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RECONNECTION IN ASTROPHYSICS:
Star—Disk Interaction

Largest Flares: L ~ 20R, = Star-Disk Magnetic Loops ?
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RECONNECTION IN ASTROPHYSICS:
Magnetar (SGR) Flares

e Magnetars: neutron stars with 10° G fields.

e Soft Gamma Repeaters (SGRs): magnetars exhibiting pow-
erful (up to 10" — 10" ergs in ~ 0.3 sec) y-ray flares.

SGR 1900+14 flare

o A
e ;' Yo

. i 55
Intensity i
i Tt

Tl - pe
ol At TR
' ‘ kT ik

Time

rHﬁ_nm" < 5 minutes =—»

Neutron Star

Reconnection
current sheet

D. Uzdensky



RECONNECTION IN SOLAR CORONA:

Solar Flares

Reconnecting
Magnetic Field Line

New Reconnecled
Magnetic Field Lines

Large Coronal
Loop

Inflowing
Magnetic Field

Hot Flare
Loop

New Reconnected
Magnetic Field Lines

image credit: G. Holman
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SUN-EARTH CONNECTION

lllustration by Steele Hill
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Reconnection in Earth’s Magnetosphere

Van Allen Radiation Belts

~ Plasma Mantle

Tail Lobe

Magnetosheath

credit: Patricia Reiff
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RECONNECTION IN THE LAB:
Sawtooth Crashes in Tokamaks
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RECONNECTION IN THE LAB:
Magnetic Reconnection Experiment (MRX)

MRX at Princeton Plasma Physics Laboratory (M. Yamada)

Other reconnection experiments throughout the world:

e LAPD (UCLA, Stenzel & Gekelman)
e Lebedev Physics Inst. (A. Frank)

e Univ. of Tokyo (TS-3, TS-4, Y. Ono)
e Swarthmore (SSX, M. Brown)

e MIT (VTF, J. Egedal)
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MAGNETIC RECONNECTION:

WHAT WE KNOW
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RECONNECTION: MAIN QUESTIONS

e Where and when reconnection takes place ?
(reconnection onset problem)

e How rapid is it? (reconnection rate problem)

e Where does the energy go?

— heat (thermal energy) vs. bulk motion (kinetic energy) 7
— electrons vs. ions ?

— thermal (heat) vs. non-thermal (particle acceleration) ?
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FAST RECONNECTION:

The Magic of Fast Reconnection

Often in Astrophysics, “Reconnection” is a magic word
invoked whenever needed.
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FAST RECONNECTION:

The Magic of Fast Reconnection

Often in Astrophysics, “Reconnection” is a magic word
invoked whenever needed.

Most Popular Reconnection Mechanism:

WAVAVAN'S > YAVAVAS
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FAST MAGNETIC RECONNECTION:
UNDER WHAT CONDITIONS?
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WHY IS RECONNECTION DIFFICULT:
NO RECONNECTION IN IDEAL MHD

Q: What makes reconnection special, non-trivial?

Reconnection is a change in magnetic field topology.

But ideal MHD preserves the identity of field lines,
does not allow magnetic field topology to change.

= Reconnection requires a (local) violation of ideal MHD.
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Reconnection Needs Thin Current Layers

e Often in Space and Astrophysics, the Lundquist num-
ber S = LV4/n > 1 = ideal MHD is fine on large
scales L.

e But notice:

— resistive diffusion term ~ V2B

— advection term ~ VB

e Hence, ideal MHD breaks down on small enough scales.

Reconnection occurs in thin current sheets.
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e Current sheets form naturally in complex magnetic systems
(Syrovatskii 1971, 1978).
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SWEET-PARKER MODEL

(Sweet 1958; Parker 1957, 1963)

y

X

reconnection 2L
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SWEET-PARKER MODEL

(Sweet 1958; Parker 1957, 1963)

reconnection’

layer
e Ohm's Law: 1 = Vrec
e Equation of motion: u=Vy = By//4mp
e Mass Conservation: Vree L = 10
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SWEET-PARKER MODEL

(Sweet 1958; Parker 1957, 1963)

reconnection’

layer
e Ohm's Law: 1 = Vrec
e Equation of motion: u=Vy = By//4mp
e Mass Conservation: Vree L = 10

e Sweet-Parker Scaling:

Urec 5SP
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Sweet—Parker Reconnection:
Too Slow for Solar Flares!

e Typical Solar Corona parameters:

L~ 10° =10 ¢em B~ 100G
ne ~ 107 — 108 ecm =2 T ~2.10°K
V4 ~ 10%cm/sec 74 ~ 10 — 100 sec

e Lundquist number:

L
g g1

U

e Sweet—Parker timescale:

Trec ™~ TA\/§ ~ months >> Tf5,e ~ 15 min

Thus, Sweet—Parker reconnection is too slow!
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PETSCHEK’S (1964) FAST RECONNECTION MODEL

(Petschek 1964 ):

Sweet—Parker reconnection is slow because plasma has to flow
out through a narrow current channel.

central diffusion

| ! .
B VA < > VA B shocks

shocks /

A family of models with

§1/2 o Vree 1

Vi log§

- fast enough to explain solar flares!
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Two Basic Reconnection Configurations:
Sweet—Parker and Petschek

/ \\ —
| 2L | | 2L |
Sweet — Parker-like Petschek-like
SLOW FAST

e Astronomical systems are astronomically large:

L> Pis di) 5SP
(e.g., solar flares: L ~ 10° cm > d; ~ dsp ~ 10> — 10° cm)
e = 0 > Osp is not enough for rapid reconnection !

e Petschek’s (196/) idea is especially important in Space-
and Astrophysics.

Fast Reconnection < Petschek Reconnection
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NO FAST RECONNECTION
IN COLLISIONAL PLASMAS

However,

e Numerical Simulations (e.g., Biskamp 1986; Uzdensky €& Kul-
srud 1998, 2000; Erkaev et al. 2001; Malyshkin et al. 2005)

e Analytical Work (Kulsrud 2001; Malyshkin et al. 2005)

e Laboratory Experiments (Ji et al. 1998)

show: Reconnection in collisional plasmas is SLOW!
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initial Petschek Final Sweet——Parker

(Uzdensky € Kulsrud 2000)

No Fast Reconnection in Collisional Plasma

D. Uzdensky



A Digression:

Break-up of SP Layer into a Chain of Plasmoids

e Long Sweet—Parker current layers are tearing unstable for
S > 10 (Bulanov, Syrovatskii, & Sakai; Loureiro et al. 2007,
2009) =  bursty reconnection.

e 2D Resistive-MHD Simulations
(Samtaney, Loureiro, Uzdensky, Schekochihin, & Cowley 2009)
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FAST RECONNECTION
means COLLISIONLESS RECONNECTION

Q: Is Fast Reconnection Possible in Collisionless Plasmas ?
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FAST RECONNECTION
means COLLISIONLESS RECONNECTION

Q: Is Fast Reconnection Possible in Collisionless Plasmas ?

YES Il
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FAST RECONNECTION
means COLLISIONLESS RECONNECTION

Q: Is Fast Reconnection Possible in Collisionless Plasmas ?

YES Il

Two candidates for fast Petschek-like collisionless reconnection:

e Hall-MHD reconnection involving two-fluid laminar
configu ration (e.g., Mandt et al. 1994; Shay et al. 1998; Birn et al. 2001;
Bhattacharijee et al. 2001; Breslau & Jardin 2003; Cassak et al. 2005)

e Spatially-localized anomalous resistivity due to plasma
micro-instabilities (e.g., Ugai & Tsuda 1977; Sato & Hayashi 1979; Sc-
holer 1989; FErkaev et al. 2001; Kulsrud 2001; Biskamp € Schwarz 2001,
Malyshkin et al. 2005)

Signatures of both mechanisms observed in MRX.

Fast Reconnection = Collisionless Reconnection

D. Uzdensky



Condition for Collisionless Reconnection

e Collisional (resistive) reconnection scale — Sweet—Parker
layer thickness:

dsp = LS~V = \[Ln/Va

e Collisionless reconnection scale — ion skin depth:

C m;

. 2
Whi dmn.e

e Collisionless Reconnection Condition:

osp < d;
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Reconnection in the Lab:
Magnetic Reconnection Experiment (MRX)

MRX at Princeton Plasma Physics Laboratory:

Experimental evidence for transition to fast collisionless recon-
nection:
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FAST COLLISIONLESS RECONNECTION:
HALL EFFECT

e Numerical simulations:

Hall effect enables Petschek-like structure
with vec < 0.1V4 (e.g., Shay et al. 1998).

TWO RECONNECTIONS

133

Sweet-Parker &4
Farl
RESISTIVE 47

sow

=il =13 a 1110 A
S (d'.]

—20d 150 0 134 200
(Cassak, Shay, € Drake 2005)
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Condition for Collisionless Reconnection

e Collisional (resistive) reconnection scale — Sweet—Parker
reconnection layer thickness:

osp = Ln/V4

e Collisionless reconnection scale — ion skin depth:

C my;

= 5
Whi dmn.e

e Collisionless Reconnection Condition:

osp < d;

e Using collisional resistivity (Yamada et al. 2006):
5SP L 1/2 [% ]1/4

—_— NN\

dz’ ()\e,mfp> my

e Then, fast reconnection requires

L < )‘e,mfp \/mi/me ~ 40 )‘e,mfp
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MOVING FORWARD....

(Uzdensky 2006, 2007)

Next Crucial Step: Taking It All Seriously !!

e (Classical collisional electron mean-free path:
7 —1 2
Aemfp =2 7 - 10°cm nyy 17
(here nig = n./101%cm™ and T+ = T, /107 K)
e Criterion for Collisionless Reconnection:

L < Ln,T) =40 Aemntp == 3+ 10°cm nyy T5
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MOVING FORWARD....

(Uzdensky 2006, 2007)

Next Crucial Step: Taking It All Seriously !!

e (Classical collisional electron mean-free path:
7 —1 2
Aemfp =2 7 - 10°cm nyy 17
(here nig = n./101%cm™ and T+ = T, /107 K)
e Criterion for Collisionless Reconnection:

L < Ln,T) =40 Aemntp == 3+ 10°cm nyy T5

e Central Electron Temperature:
B3 /8w
2kpn.
(here By = B;/100G)

T, =

~ 1.3-10°K B3 n;,

e Collisionless reconnection condition: final form:

L < L.n,By) ~5-10"em nyi B,
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Astrophysical applications:

SELF-REGULATED
MARGINALLY COLLISIONLESS
ASTROPHYSICAL CORONAE

e The Sun
e Accreting Black Holes
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I. SOLAR CORONA
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SOLAR CORONA

o
TRACE -171 A

e Typical Solar Corona parameters:

L ~ 10° — 10" cm B~ 100G
ne ~ 107 —=10%cm™? T ~2-10°K
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Critical Density for Collisionless Reconnection

(Uzdensky 2006, 2007)

MAIN IDEA: coronal heating is a self-regulating process keep-
ing plasma marginally collisionless.

EXAMPLE:

e Consider a reconnecting structure set up by loop dynamics:
L and By are fixed.

e Critical density for fast collisionless reconnection:

n<n.~2-100em™ Bf/;’ L§1/3

e Plasma density acts as a reconnection switch:

— 7N >N no reconnection =- no heating:
plasma gradually cools via radiation/thermal conduc-
tion, density scale-height decreases, n,. drops.

—n, < n. rapid collisionless reconnection commences,
energy is released.
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Self-Regulation of Coronal Heating

(Uzdensky 2006, 2007)

e Key feedback:
coronal energy release =- chromospheric evaporation =-
coronal density rises.

e . > n. in post-flare loops = subsequent magnetic dissipa-
tion is suppressed.

Thus, although highly intermaittent and tnhomogeneous,
corona 1s working to keep itself roughly at the critical den-
sity ne(L, By).

= Self-Regulation of Coronal Heating !

Q:
Similar processes be at work in coronae of other stars (Cas-
sak et al. 2008) and accretion disks (Goodman & Uzdensky 2008).
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ACCRETION DISK CORONA
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Marginally Collisionless Coronae
of Black-Hole Accretion Disks

(Goodman & Uzdensky 2008)

e Observational Evidence:

— Moderate optical depth: 7=n.opr H ~ 1.

— Quasi-relativistic e-s: 6, = Te/mec2 ~0.1—-0.5
e Spitzer resistivity: NSpitzer =2 CTe 96_3/2 log A
e Lundquist number:

S_HVAN( RpH
o A\r.logA

) f1/2m1/27_1/29§/2 hoel/4 1017

e Sweet—Parker reconnection layer thickness: dgp ~ HS~1/?

e lon collisionless skin-depth: d; = c/w,; ~ [(m,/m.) 1. H/T]'/?

e Coronal collisionality parameter:

0 . log A
% N [m 08 ]1/2 (fm)_1/4 +3/4 (96—3/4 r3/8
1 my

BH ADCe are marginally collisionless: dsp ~ d;.
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Self-Regulation of Coronal Heating

Two Reconnection Regimes:

® Osp > d;: slow collisional Sweet—Parker reconnection

® Osp < d;: fast collisionless reconnection

Coronal Collisionality Cycle

Dense, collisional plasma;
Negligible reconnection;
Buildup of magnetic stress,
field-line opening

cooling
(& outflow?)
chromospheric heating,
evaporation
Collisionless plasma;
Fast reconnection;
Plasma heating.
Uzdensky 2007

applications: solar/stellar coronae, accretion disk coronae
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FUTURE DIRECTIONS

OF MAGNETIC RECONNECTION RESEARCH
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FUTURE DIRECTIONS 1

e Time-dependent, non-stationary reconnection in very large systems sus-
ceptable to secondary tearing instability (both collisional and collision-
less):

— resistive-MHD reconnection in long current layers (S > 10%)
(e.g., Bulanov et al. 1978; Loureiro et al. 2007, 2009; Lapenta 2008;
Bhattacharjee et al. 2009; Samtaney et al. 2009)

— collisionless reconnection

— what is the effect of secondary plasmoids on the time-averaged
reconnection rate?

— what is the effect of secondary plasmoids on non-thermal particle
acceleration

— now accessible to numerical simulations!

e Interaction between two fundamental plasma processes:
reconnection and turbulence,
e.g., externally-driven resistive-MHD turbulence
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OPEN QUESTIONS I:

Collisional (resistive-MHD) regime

s it really slow? How slow?

What are the effects of:

L.

A

Actual Spitzer resistivity instead of constant uniform resistivity ?
Ohmic heating and realistic e-thermal conduction ?
Compressibility: small Bypstream *

Viscosity (anisotropic) ?

Secondary tearing instability in very long current layers (for S > 10%)?
(e.g., Bulanov et al. 1978; Loureiro et al. 2007; Samtaney et al.
2009)

. MHD turbulence? (e.g., Lazarian & Vishniac 1999)

. Additional (astro-)physical effects:

- weakly-ionized plasma (ISM, molecular clouds) (Zweibel 1989);
- radiative (e.g., Compton) cooling (black-hole coronae);

- Compton resistivity (radiation drag; black-hole coronae and jets);
- pair creation (black holes and magnetars)

More lab studies, especially in large-S limit !

D. Uzdensky



OPEN QUESTIONS II:

collisionless reconnection

. Physical nature of nynom ?  (e.g., Kulsrud et al. 2005; Ji et al. 20057)

. Petschek-like structure for given functional shape of 7.n0m?
Reconnection rate in terms of basic plasma parameters?
Where is 1an0m excited: central diffusion region /separatrices ?
(Malyshkin et al. 2005)

. How do two-fluid effects and anomalous resistivity interact ?

. What are the effects of B, and [(,pstream ON triggering nanom ¢
on Hall reconnection ?

. What system parameters affect reconnection rate in two-fluid regime ?

. Is collisionless reconnection laminar or bursty ?
What is time-averaged reconnection rate ?
(Bhattacharjee 2004; Daughton et al. 2006; Karimabadi et al. 2007)

. How is the released energy partitioned between:
Ekim Ee,th1 Ei,thr and Enon—therm?
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SUMMARY
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Fast Collisionless Reconnection
ANOMALOUS RESISTIVITY

e What is the physically-relevant resistivity 7?

e Physical Mechanism:

J
when Vg = > Ue ™~ Uthermal
en,

plasma instabilities are excited = developed microturbulence. Scat-
tering of electrons by waves enhances resistivity.

e As the layer's thickness 0 decreases down to critical thickness

CBO

50 = —,
4779,

where j. = en.v,,

anomalous resistivity n = n(j) turns on.
e Anomalous resistivity 7 = 1(j) is localized near the center.

e Simulations: strongly-localized resistivity =- Petschek-like configura-
tion (also theory by Kulsrud 2001; Malyshkin et al. 2005).

e Dual role of anomalous resistivity:

— direct: MNanom > Tcoll

— gndirect:  enables Petschek mechanism

e Resulting rate plausible for solar flares (e.g., Uzdensky 2003).
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FAST COLLISIONLESS RECONNECTION:
HALL EFFECT

e Electron equation of motion = Generalized Ohm'’s law:

1 1 ] X B
E=—[vox B+ nj=—[vxB+nj+°

neec
resistive M HD Hall term

[ = nee (vi — ve)]

e Hall-term spatial scale:

C m;
d=—=c 5 -
Whi 4mn.e

e Two-fluid effects: on scales < d;, ions are no longer tied
to field lines but electrons still are = 1ions and electrons
move separately:

>IN

‘ RANN RN g i
IR YO
%;%r‘ LW

e Reconnection layer thickness  § ~ d; (> dsp).
But this is not sufficient since still d; < L |

e
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Central Electron Temperture

Role of Central Temperature (Uzdensky 2007)

® \mfp ~ Te2 = important to determine 7.

e Two temperatures: ambient (7%, ~ 2-10° K) and central
layer T, > Teo,

e 1. is not measured directly in solar corona.
How to estimate it?

e Pressure balance by itself is not enough:
degeneracy between 7, and n..

e [, is determined by balance btw heating and cooling
e Ohmic heating + advective cooling: T, = T uipartition
e Radiative heat losses: small for the solar corona

e Heat losses by electron thermal conduction:
Teond = T4 for the collisional regime.

e Thus, Joule heat is deposited but does not have enough
time to escape if the collisionality requirement is met.

e Density will not increase by more than a factor of a few
above the ambient level, but 7, may become much higher,
reaching the equipartition level.
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Requirements for Solar Corona Models

Numerical simulations of solar corona should include ALL of
the following:

e flux emergence and photospheric footpoint motions;
e physically-motivated prescription for transition from slow to
fast reconnection (a subgrid model for a large-scale MHD

simulation);

e mass exchange between corona and solar surface
(e.g., chromospheric evaporation and plasma precipitation);

e optically-thin radiative cooling and thermal conduction
(including by nonthermal e-s) along B.
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II. OTHER STARS
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CORONAE OF OTHER STARS

EUVE observations of 107 flares in 37 sun-like (F,G,K) and
M-type stars:

:""""""""""'Ll/':
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(Cassak, Mullan, & Shay 2008)
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RECONNECTION IN ASTROPHYSICS:
Pulsar Wind

Chandra Space Telescope

Close to pulsar (light cylinder): Lmagn =>> Lparticles
Far from pulsar (termination shock): Lmagn < Lparticles

Q: How is magnetic energy transferred to particles?

Reconnection in pulsar wind.
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RECONNECTION IN ASTROPHYSICS:
GIANT SGR FLARES

Reconnection in Magnetar Magnetospheres
as a model for giant flares in Soft Gamma Repeaters

(Thompson, Lyutikov & Kulkarni 2002; Lyutikov 2003, 2000):

Neutron Star

Reconnection
current sheet

e twisted internal magnetic field breaks the NS crust
e sheared crust motion twists up the external magnetosphere

e subsequent reconnection in the magnetosphere leads to a flare
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CURRENT SHEETS IN ASTROPHYSICS:
STAR-DISK MAGNETIC INTERACTION

(van Ballegooijen 1994; Lynden-Bell & Boily 1994; Lovelace, Ro-
manova, € Bisnovatyi-Kogan 1995; Hayashi, Shibata, € Matsumoto
1996; Goodson, Winglee, € Bohm 1999; Uzdensky, Konigl & Litwin 2002;
Uzdensky 2002, 2004)

s Q

rotation axis

star

/ midplane

rotation axis

star

/ midplane
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STAR-DISK MAGNETIC INTERACTION
RECONNECTION CYCLES

Cycles of Opening and Reconnection:

Initial Conditions Expansion from Reconnection
Rotation

Accretion

Goodson et al. (1999)
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RECONNECTION in ASTROPHYSICS:
ACCRETION-DISK CORONA

(Uzdensky € Goodman 2008)
Magnetized Corona above a thin turbulent accretion disk:

numerous magnetic loops subject to shear due to Keplerian
rotation.

Role of reconnection:
controls magnetic scale height and energy dissipation.
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A Teaser: No Reconnection in Collapsars ?

Magnetic Tower in a Star (Uzdensky & MacFadyen 20006):
magnetic version of collapsar model for long GRBs.

magnetic
tower

black hole

cocoon

e (Q: Can fast reconnection happen near central engine?

e Fiducial parameters: B ~ 10" G, n, ~ 10% cm™,
T~3-10°K, L~ 10" cm.

e Reconnection parameters: S ~ 10, dsp ~ 1072 cm, A¢ msp ~
1075 em, Pe ~ 107" em, d, ~ 107 cm.

e Implication: L > dsp > Ocoliisionless
= no fast reconnection =-  Magnetic outflow sur-
vives propagation through the inner part of the star!
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FAST RECONNECTION:
CAVEATS AND ALTERNATIVES

e 3D-MHD Turbulent Reconnection:
(Lazarian & Vishniac 1999; Bhattacharjee & Hameiri 1986; Strauss
1988; Kim & Diamond 2001)

e Bursty, Impulsive Reconnection:
(e.g., Bhattacharjee 2004)

e Additional Physics: e.g., partially-ionized plasmas in
molecular clouds (Zweibel 1989).
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FAST COLLISIONLESS RECONNECTION:
HALL EFFECT

e Electron equation of motion = Generalized Ohm's law:

1 1 1 X B
E:_E[VGXB]+UJI_E[VXB]+UJ_|_ J

NeeC
—_——

resistive M HD Hall term
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FAST COLLISIONLESS RECONNECTION:
HALL EFFECT

e Electron equation of motion = Generalized Ohm's law:

1 1 1 X B
E:_E[VGXB]+UJI_E[VXB]+UJ_|_ J

NeeC
—_——

resistive M HD Hall term

[j = nee (vi— ve)]

e Hall-term spatial scale:

C m;

= 5 -
Whi dmn.e

e Two-fluid effects: on scales < d;, ions are no longer tied
to field lines but electrons still are = ions and electrons
move separately:

S

l' ALK R g i
IR YCE
= L»..~

e
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FAST COLLISIONLESS RECONNECTION:
HALL EFFECT

e Electron equation of motion = Generalized Ohm'’s law:

1 1 ] X B
E=—[vox B+ nj=—[vxB+nj+°

neec
resistive M HD Hall term

[ = nee (vi — ve)]

e Hall-term spatial scale:

C m;
d=—=c 5 -
Whi 4mn.e

e Two-fluid effects: on scales < d;, ions are no longer tied
to field lines but electrons still are = 1ions and electrons
move separately:

>IN

‘ RANN RN g i
IR YO
%;%r‘ LW

e Reconnection layer thickness  § ~ d; (> dsp).
But this is not sufficient since still d; < L |

e
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FAST COLLISIONLESS RECONNECTION:
HALL EFFECT

e Good news (numerical simuations):

Hall effect enables Petschek-like structure
with vec < 0.1V4 (e.g., Shay et al. 1998).

TWO RECONNECTIONS

130

Sweet-Parker EJ
Fil
RESISTIVE 47
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Cassak, Shay, ¢ Drake 2005
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Fast Collisionless Reconnection
ANOMALOUS RESISTIVITY

e What is the physically-relevant resistivity 77
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Fast Collisionless Reconnection
ANOMALOUS RESISTIVITY

e What is the physically-relevant resistivity 77

e Physical Mechanism:

J
when vy =
ene

> Ue ™~ Uthermal
plasma instabilities are excited = developed microturbulence. Scat-
tering of electrons by waves enhances resistivity.

e As the layer's thickness 0 decreases down to critical thickness

CBO

50 =,
Amge

where j. = en.v,,

anomalous resistivity n = n(j) turns on.
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Fast Collisionless Reconnection
ANOMALOUS RESISTIVITY

e What is the physically-relevant resistivity 7)?

e Physical Mechanism:

J
when Vg = > Ue ™~ Uthermal
en,

plasma instabilities are excited = developed microturbulence. Scat-
tering of electrons by waves enhances resistivity.

e As the layer's thickness 0 decreases down to critical thickness

B
DE—
4779,

where j. = en.v,,

anomalous resistivity n = n(j) turns on.
e Anomalous resistivity 7 = 7(j) is localized near the center.

e Simulations: strongly-localized resistivity = Petschek-like configura-
tion (also theory by Kulsrud 2001; Malyshkin et al. 2005).

e Dual role of anomalous resistivity:

— direct: TMNanom > Tcoll

— indirect:  enables Petschek mechanism

e Resulting rate plausible for solar flares (e.g., Uzdensky 2003).
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Condition for Collisionless Reconnection:
Strong Guide Field Case: B, > By

e Collisional (resistive) reconnection scale — Sweet—Parker
reconnection layer thickness:

osp = Ln/Va

e Collisionless reconnection scale for strong guide field case,
— ion-sound Larmor radius:

B
=t~ g gl 20
IO ¢ (4 66 B

z

e Collisionless Reconnection Condition:

osp < Ps

e Final form:

;B B
L< Le= Aty [ (0 = 6-10%em nif B (")
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What is the Status of our Knowledge

about Magnetic Reconnection ?

Common Perception:

“We don’t know anything about reconnection.

So we are free to assume anything we want.”

NOT TRUE !!

INSTEAD:

We don't know everything about reconnection.

But there are some things we do know.

(or we think we know)
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Sweet—Parker Reconnection:
Too Slow for Solar Flares!

e Typical Solar Corona parameters:

L~ 10° =10 ¢em B~ 100G
ne ~ 107 — 108 ecm =2 T ~2-10°K
V4 ~ 10%cm/sec 74 ~ 10 — 100 sec

D. Uzdensky



Sweet—Parker Reconnection:
Too Slow for Solar Flares!

e Typical Solar Corona parameters:

L~ 10° =10 ¢em B~ 100G
ne ~ 107 — 108 ecm =2 T ~2-10°K
V4 ~ 10%cm/sec 74 ~ 10 — 100 sec

e Lundquist number:

L
g g1

U

e Sweet—Parker timescale:

Trec ™~ TA\/§ ~ months >> Tf5,e ~ 15 min
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OPEN QUESTIONS

IN MAGNETIC RECONNECTION
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OPEN QUESTIONS I:

Collisionless Reconnection

1. What is the physical nature and functional shape of n3n0m ?
(e.g., Kulsrud et al. 2005; Ji et al. 2005 7?)
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2. Petschek-like structure for given functional shape of Manom?
Reconnection rate in terms of basic plasma parameters?
(Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp € Schwarz
2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)
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OPEN QUESTIONS I:

Collisionless Reconnection

1. What is the physical nature and functional shape of n3n0m ?
(e.g., Kulsrud et al. 2005; Ji et al. 2005 7?)

2. Petschek-like structure for given functional shape of Manom?
Reconnection rate in terms of basic plasma parameters?
(Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp € Schwarz
2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)

3. How do the system parameters (e.g., Bguide and Bypstream) affect colli-
sionless reconnection ?
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. What is the physical nature and functional shape of 7M.nom ?
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(e.g., Kulsrud et al. 2005; Ji et al. 2005 7?)

. Petschek-like structure for given functional shape of 7.10m?
Reconnection rate in terms of basic plasma parameters?

(Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp € Schwarz
2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)

. How do the system parameters (e.g., Bgyide and [ypstream) affect colli-
sionless reconnection ?

. How do two-fluid (e.g., Hall) effects and anomalous resistivity interact ?

. What is the role of electron holes in guide-field reconnection?

D. Uzdensky



OPEN QUESTIONS I:

Collisionless Reconnection

. What is the physical nature and functional shape of 7M.nom ?
(e.g., Kulsrud et al. 2005; Ji et al. 2005 7?)

. Petschek-like structure for given functional shape of 7.10m?
Reconnection rate in terms of basic plasma parameters?

(Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp € Schwarz
2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)

. How do the system parameters (e.g., Bgyide and [ypstream) affect colli-
sionless reconnection ?

. How do two-fluid (e.g., Hall) effects and anomalous resistivity interact ?
. What is the role of electron holes in guide-field reconnection?

. Is collisionless reconnection laminar or bursty ?
(Bhattacharjee 200/4; Daughton et al. 2006, 2009)
What is time-averaged reconnection rate ?

What are the observable signatures (e.g., radio) 7
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OPEN QUESTIONS I:

Collisionless Reconnection

. What is the physical nature and functional shape of 7M.nom ?
(e.g., Kulsrud et al. 2005; Ji et al. 2005 7?)

. Petschek-like structure for given functional shape of 7.10m?
Reconnection rate in terms of basic plasma parameters?

(Ugai & Tsuda 1977; Sato & Hayashi 1979; Scholer 1989; Biskamp € Schwarz
2001; Kulsrud 2001; Uzdensky 2003, Malyshkin et al. 2005)

. How do the system parameters (e.g., Bgyide and [ypstream) affect colli-
sionless reconnection ?

. How do two-fluid (e.g., Hall) effects and anomalous resistivity interact ?
. What is the role of electron holes in guide-field reconnection?

. Is collisionless reconnection laminar or bursty ?
(Bhattacharjee 200/4; Daughton et al. 2006, 2009)
What is time-averaged reconnection rate ?

What are the observable signatures (e.g., radio) 7

. How is the released energy partitioned between:
Ekim Ee,th1 E@',thr and Enon—therm?
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OPEN QUESTIONS II:
Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with 17 = const, and

in a limited range of Lundquist numbers (S ~ 10° — 10%).
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OPEN QUESTIONS II:
Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with 17 = const, and

in a limited range of Lundquist numbers (S ~ 10° — 10%).

What are the effects of:

1. Actual Spitzer resistivity instead of n = const ?
2. Ohmic heating and realistic e-thermal conduction?

4. Viscosity (anisotropic) 7

D. Uzdensky



OPEN QUESTIONS II:
Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with 17 = const, and

in a limited range of Lundquist numbers (S ~ 10° — 10%).

What are the effects of:

1. Actual Spitzer resistivity instead of n = const ?

2. Ohmic heating and realistic e-thermal conduction?
3. Compressibility: small Bypstream ?

4. Viscosity (anisotropic) 7

5. Secondary tearing instability in long current sheets (for S > 10%)?
(Bulanov et al. 1978; Loureiro et al. 2007; Samtaney et al. 2009)
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OPEN QUESTIONS II:
Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with 17 = const, and

in a limited range of Lundquist numbers (S ~ 10° — 10%).

What are the effects of:

1. Actual Spitzer resistivity instead of n = const ?
Ohmic heating and realistic e-thermal conduction ?

Viscosity (anisotropic) ?

A

Secondary tearing instability in long current sheets (for S > 10%)?
(Bulanov et al. 1978; Loureiro et al. 2007; Samtaney et al. 2009)

6. MHD turbulence? (e.g., Matthaeus € Lamkin 1986; Lazarian € Vishniac
1999, Loureiro et al. 2009)
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OPEN QUESTIONS II:
Collisional (resistive-MHD) Regime

Is collisional reconnection really slow? How slow?

Most previous numerical studies were incompressible, with 17 = const, and

in a limited range of Lundquist numbers (S ~ 10° — 10%).

What are the effects of:

A

. Actual Spitzer resistivity instead of 17 = const ?

Ohmic heating and realistic e-thermal conduction ?
Compressibility: small By pstream ?
Viscosity (anisotropic) ?

Secondary tearing instability in long current sheets (for S > 10%)?
(Bulanov et al. 1978; Loureiro et al. 2007; Samtaney et al. 2009)

. MHD turbulence? (e.g., Matthaeus € Lamkin 1986; Lazarian € Vishniac

1999, Loureiro et al. 2009)

Additional (astro-)physical effects:

- weakly-ionized and dusty plasma (ISM, molecular clouds) (Zweibel 1989);
- Compton resistivity (radiation drag; black-hole coronae and jets);

- radiative (e.g., Compton) cooling (black-hole coronae);

- pair creation (black holes, magnetars) (Uzdensky 2009, in preparation)

D. Uzdensky



FUTURE DIRECTIONS 1

e Non-stationary, bursty reconnection in very large systems susceptable
to secondary tearing instability:

— resistive-MHD reconnection in long current sheets (S > 10%)
(e.g., Bulanov et al. 1978; Loureiro et al. 2007, 2009; Lapenta 2008;
Bhattacharjee et al. 2009; Samtaney et al. 2009)

— collisionless reconnection (Daughton et al. 2008);

— How does time-averaged reconnection rate scale with S = LV,/n
for S > 101 ?

— Role of secondary plasmoids in non-thermal particle acceleration
(Drake et al. 20006).

— Radio-signatures: a direct probe into reconnection layer?

— now accessible to numerical simulations!

e Interaction between two fundamental plasma processes:
reconnection and turbulence,
e.g., externally-driven resistive-MHD turbulence (e.g., Lazarian € Vish-
niac 1999; Kowal et al. 2008; Loureiro et al. 2009, in preparation)
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MHD-Turbulent Reconnection

2D incompressible resistive-MHD simulations
(Loureiro, Uzdensky, Schekochikhin, Yousef, € Cowley 2009)
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MHD-Turbulent Reconnection

2D incompressible resistive-MHD simulations
(Loureiro, Uzdensky, Schekochikhin, Yousef, € Cowley 2009)
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FUTURE DIRECTIONS II

Astrophysically motivated questions:

e How is the released magnetic energy partitioned between:
Ekin, Ee,th, Ei,thr and Enon—therm?

e A new frontier in astrophysical reconnection: High-energy-density (HED),
radiative environements (Uzdensky 2008, 2009 in prep.):

— radiative cooling (e.g., Compton) of the reconnection layer (black-
hole coronae; magnetar flares);

— Compton resistivity (radiation drag; black-hole coronae/jets)

— radiation pressure (collapsars and magnetar flares)

— pair creation (BH coronae; collapsars and magnetar flares)

e Prospects for experimental research:

— Next generation (medium-scale) reconnection expt: larger (S >
10%), better separation of scales; better diagnostics (incl. energetic
particles)

— HED reconnection with radiation cooling/pressure effects:
laser-plasma facilities
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SOLAR CORONAL HEATING

€]
TRACE -171 A

Solar corona: ne ~ 100em=3 T~ 2.10°K.
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SOLAR CORONAL HEATING

€]
TRACE -171 A

Solar corona: ne ~ 100em=3, T~ 2-109K.

Nanoflare model of coronal heating (Parker 1988):

e Footpoint motions pump magnetic energy into corona.
e Energy dissipates in the corona via reconnection.

e Characteristic scale (L) and field strength (B) of coronal
magnetic structures are determined by photospheric mo-
tions, flux emergence, etc.

e But what determines coronal density ?

D. Uzdensky
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Secondary Tearing Instability in Current Sheets

e Very long Sweet—Parker resistive current sheets themselves
becoming tearing unstable for S > 10* (Bulanov et al. 1978;
Loureiro et al. 2007, 2009) leading to non-stationary, bursty
reconnection.

e How does time-averaged reconnection rate scale with .S =
LV /n for S > 10* 7

e Now accessible to numerical simulations! (Lapenta 2008; Bhat-
tacharjee et al. 2009; Samtaney et al. 2009)
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RESISTIVE MHD

e Resistive magnetohydrodynamics (MHD)
Magnetic Induction Equation:

B
%t:—[Vx v x B]]+1V’B

advection dif fusion
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RESISTIVE MHD

e Resistive magnetohydrodynamics (MHD)
Magnetic Induction Equation:

B
%t:—[Vx v x B]]+7V°B

advection dif fusion

e Characteristic velocity in MHD — Alfvén velocity:
B

Vamp

e Characteristic advection time — Alfvén crossing time:

L
=7,

Vi =

TA
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RESISTIVE MHD

e Resistive magnetohydrodynamics (MHD)
Magnetic Induction Equation:

B
%t:—[Vx v x B]]+7V°B

advection dif fusion

e Characteristic velocity in MHD — Alfvén velocity:
B

Vamp

e Characteristic advection time — Alfvén crossing time:

L
=7,

Vi =

TA

e Characteristic resistive diffusion time:

L2

Tres —

e Measure of flux-freezing — Lundquist number:

res LV
g=" _ZA (s
TA n
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Reconnection Needs Thin Current Layers

e Usually in Space and Astrophysics S = LVa/n > 1
= ideal MHD works well on large scales L.
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Reconnection Needs Thin Current Layers

e Usually in Space and Astrophysics S = LVa/n > 1
= ideal MHD works well on large scales L.

e But notice:

— resistive diffusion term ~ V2B

— advection term ~ VB
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